Maximum likelihood analysis of generalized linear models with missing covariates.

نویسندگان

  • N J Horton
  • N M Laird
چکیده

Missing data is a common occurrence in most medical research data collection enterprises. There is an extensive literature concerning missing data, much of which has focused on missing outcomes. Covariates in regression models are often missing, particularly if information is being collected from multiple sources. The method of weights is an implementation of the EM algorithm for general maximum-likelihood analysis of regression models, including generalized linear models (GLMs) with incomplete covariates. In this paper, we will describe the method of weights in detail, illustrate its application with several examples, discuss its advantages and limitations, and review extensions and applications of the method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum Likelihood Estimation of Parameters in Generalized Functional Linear Model

Sometimes, in practice, data are a function of another variable, which is called functional data. If the scalar response variable is categorical or discrete, and the covariates are functional, then a generalized functional linear model is used to analyze this type of data. In this paper, a truncated generalized functional linear model is studied and a maximum likelihood approach is used to esti...

متن کامل

Hierarchical likelihood methods for nonlinear and generalized linear mixed models with missing data and measurement errors in covariates

Nonlinear mixed-effects (NLME) models and generalized linear mixed models (GLMM) are popular in the analysis of longitudinal data and clustered data. Covariates are often introduced to partially explain the large between individual (cluster) variation. Many of these covariates, however, contain missing data and/or are measured with errors [1]. In these cases, likelihood inference can be computa...

متن کامل

Likelihood-based Inference with Nonignorable Missing Responses and Covariates in Models for Discrete Longitudinal Data

We propose methods for estimating parameters in two types of models for discrete longitudinal data in the presence of nonignorable missing responses and covariates. We first present the generalized linear model with random effects, also known as the generalized linear mixed model. We specify a missing data mechanism and a missing covariate distribution and incorporate them into the complete dat...

متن کامل

Model averaging estimation of generalized linear models with imputed covariates

We address the problem of estimating generalized linear models when some covariate values aremissing but imputations are available to fill-in the missing values. This situation generates a bias-precision tradeoff in the estimation of the model parameters. Extending the generalized missing-indicator method proposed by Dardanoni et al. (2011) for linear regression, we handle this trade-off as a p...

متن کامل

Maximum likelihood analysis of logistic regression models with incomplete covariate data and auxiliary information.

This article presents a new method for maximum likelihood estimation of logistic regression models with incomplete covariate data where auxiliary information is available. This auxiliary information is extraneous to the regression model of interest but predictive of the covariate with missing data. Ibrahim (1990, Journal of the American Statistical Association 85, 765-769) provides a general me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Statistical methods in medical research

دوره 8 1  شماره 

صفحات  -

تاریخ انتشار 1999